

# Schulungsprogramm

# Kunststoff-Rohrsysteme in der Halbleiter-, Photovoltaik- und Pharmaindustrie

Auf Grund ihrer hervorragenden technischen Eigenschaften kommen Rohrsysteme aus Kunststoff in der Halbleiter-, Photovoltaik- und Pharmaindustrie an vielen Stellen zum Einsatz. Durch die geringen Wartungskosten, die hohe Zuverlässigkeit, Langlebigkeit und Reinheit werden Kunststoff-Rohrleitungen z. B. für die Chemieversorgung, im Reinstwasser-, als auch im Kühlwasser-, Abwasser-, Druckluftbereich u. v. m. eingesetzt.

**Wir laden Sie herzlich ein** zu unserer Schulungsreihe speziell für Fachpublikum wie Sie: Planer, Projektmanager und Verarbeiter aus der Halbleiterindustrie.

### Schulungsdurchführung von unseren Experten

Die Schulungen werden von dem für Sie verantwortlichen Außendienstmitarbeiter und Produktmanager gemeinsam durchgeführt. Sie stimmen sich direkt mit Ihnen ab und erhalten die Unterstützung, die Sie sich wünschen.

# Individuelle Themenauswahl

Gerne gehen wir auf Ihre Wünsche ein. Sie können sich aus den umseitigen Schulungen die Bausteine auswählen, die Sie interessieren. Haben Sie einen Vorschlag zur Themenergänzung, lassen Sie es uns wissen.

#### Ort Ihrer Wahl

Die Schulungen können wir bei Ihnen vor Ort, in einer

Schulungsstätte in Ihrer Nähe oder bei uns im Werk durchführen. Je nach dem, was für Sie am einfachsten ist. Auf Wunsch und nach vorheriger Absprache bieten wir diese Schulungen auch für einen größeren Personenkreis an.

## Fortführende Unterstützung und Beratung

Selbstverständlich stehen wir Ihnen auch nach den Schulungen weiter zur Verfügung.

Sollten Sie im Vorfeld einer Planung oder im Laufe eines Projekts Fragen haben, wenden Sie sich einfach an Ihre Ansprechpartner aus dem Außendienst oder Produktmanagement.

Wir unterstützen und beraten Sie gerne, um mit Ihnen gemeinsam die passenden Lösungen zu finden.

Suchen Sie sich die für Sie interessanten Bausteine auf der Rückseite heraus und sprechen Sie uns einfach an.

Wir freuen uns auf Sie!

**Ihr Team von FRANK** 



| Auswahl | Baustein<br>Nr. | Thema                                           | Inhalte                                                                                                                                                                                                                                |
|---------|-----------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | 1               | Anwendungsgebiete von<br>Kunststoffrohrsystemen | <ul> <li>Wasseraufbereitung</li> <li>Abwasserentsorgung</li> <li>Reinstwasserverteilung</li> <li>Chemieversorgung</li> <li>Abluft</li> <li>Druckluft</li> <li>Feuerlöschleitung</li> </ul>                                             |
|         | 2               | Werkstoffe                                      | <ul> <li>Aufbau und allgemeine Eigenschaften von:         <ul> <li>PVDF</li> <li>PE100 / PE100 RC</li> <li>PP</li> <li>ECTFE</li> <li>PPs</li> </ul> </li> <li>Unterschiede und Vorteile gegenüber metallischen Werkstoffen</li> </ul> |
|         | 3               | Normung und Zulassung                           | <ul> <li>Normen für Kunststoffrohre und -formteile (DIN EN ISO)</li> <li>Zulassungen für Kunststoffrohre und -formteile (DIBt, FM etc.)</li> </ul>                                                                                     |
|         | 4               | Dokumentation und QS                            | <ul> <li>Dokumentation gemäß DIN EN 10204</li> <li>Art und Umfang der Prüfungen</li> <li>frei von Silikon und lackbenetzungsstörenden Substanzen</li> <li>Reinigung, Reinheit der Rohrsysteme</li> </ul>                               |
|         |                 |                                                 | 5a Ermittlung des richtigen Rohrleitungssystems  Auslegung Rohrquerschnitt  Außendurchmesser (da) im Vergleich zum Nenndurchmesser (DN)  zulässige Betriebsüberdrücke vs. PN und SDR Klassen  Lebensdauer  Chemische Beständigkeit     |
|         | 5               | Planung von Kunststoff-<br>rohrleitungssystemen | 5b Verlegerichtlinien  Längenänderung Biegeschenkel oder Festeinspannung Festpunkte Stützweiten Befestigung Erdverlegte Rohre Druckprüfung                                                                                             |
|         |                 |                                                 | Sc CAD Bibliothek und Ausschreibungstexte     Vorstellung Agru CAD zur Erstellung von Rohrisometrien     Vorstellen der Ausschreibungstexte                                                                                            |
|         | 6               | Produktprogramm                                 | 6a Rohre und Formteile PURAD PVDF UHP, PP pure, Polypure AGRU Vent (PVDF Lüftungsrohrsystem) PP PE 100 PVDF / ECTFE FRANK-Doppelrohrsystem                                                                                             |
|         |                 |                                                 | 6b Armaturen, MSR                                                                                                                                                                                                                      |
|         |                 |                                                 | <ul> <li>7a Theoretischer Teil</li> <li>DVS Richtlinien für alle Schweißverfahren</li> <li>Vermeiden von Fehlern beim Schweißen</li> </ul>                                                                                             |
|         | 7               | Schweißen                                       | 7b Praktischer Teil Infrarotschweißen Heizelementstumpfschweißen Heizwendelschweißen wulstloses Schweißen Infos zur Druckprobe                                                                                                         |

